Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Microbiol ; 17(2): 147-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25225110

RESUMO

Inducing long-term protective memory CD8(+) T-cells is a desirable goal for vaccines against intracellular pathogens. However, the mechanisms of differentiation of CD8(+) T-cells into long-lived memory cells capable of mediating protection of immunized hosts remain incompletely understood. We have developed an experimental system using mice immunized with wild type (WT) or mutants of the intracellular bacterium Listeria monocytogenes (Lm) that either do or do not develop protective memory CD8(+) T-cells. We previously reported that mice immunized with Lm lacking functional SecA2, an auxiliary secretion system of gram-positive bacteria, did not differentiate functional memory CD8(+) T-cells that protected against a challenge infection with WT Lm. Herein we hypothesized that the p60 and NamA autolysins of Lm, which are major substrates of the SecA2 pathway, account for this phenotype. We generated Lm genetically deficient for genes encoding for the p60 and NamA proteins, ΔiapΔmurA Lm, and further characterized this mutant. Δp60ΔNamA Lm exhibited a strong filamentous phenotype, inefficiently colonized host tissues, and grew mostly outside cells. When Δp60ΔNamA Lm was made single unit, cell invasion was restored to WT levels during vaccination, yet induced memory T-cells still did not protect immunized hosts against recall infection. Recruitment of blood phagocytes and antigen-presenting cell activation was close to that of mice immunized with ΔActA Lm, which develop protective memory. However, key inflammatory factors involved in optimal T-cell programming such as IL-12 and type I IFN (IFN-I) were lacking, suggesting that cytokine signals may largely account for the observed phenotype. Thus, altogether, these results establish that p60 and NamA secreted by Lm promote primary host cell invasion, the inflammatory response and the differentiation of functional memory CD8(+) T-cells, by preventing Lm filamentation during growth and subsequent triggering of innate sensing mechanisms.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Memória Imunológica , Listeria monocytogenes/imunologia , Listeriose/imunologia , N-Acetil-Muramil-L-Alanina Amidase/imunologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Animais , Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Deleção de Genes , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , N-Acetil-Muramil-L-Alanina Amidase/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
3.
Immunity ; 40(6): 974-88, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24931122

RESUMO

Cells of the innate immune system are essential for host defenses against primary microbial pathogen infections, yet their involvement in effective memory responses of vaccinated individuals has been poorly investigated. Here we show that memory T cells instruct innate cells to become potent effector cells in a systemic and a mucosal model of infection. Memory T cells controlled phagocyte, dendritic cell, and NK or NK T cell mobilization and induction of a strong program of differentiation, which included their expression of effector cytokines and microbicidal pathways, all of which were delayed in nonvaccinated hosts. Disruption of IFN-γ signaling in Ly6C+ monocytes, dendritic cells, and macrophages impaired these processes and the control of pathogen growth. These results reveal how memory T cells, through rapid secretion of IFN-γ, orchestrate extensive modifications of host innate immune responses that are essential for effective protection of vaccinated hosts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Antígenos Ly , Diferenciação Celular/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Herpesvirus Humano 2/imunologia , Imunidade Inata , Imunização , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Células T Matadoras Naturais/imunologia , Fagocitose/imunologia , Receptores de Interferon/genética , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...